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Acoustic Measurements
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How do you Discriminate, Classify, and Identify targets?

D (wanted from unwanted), C categorize, I label

Measure: amplitude f(frequency), elapsed time

(everything else derived)



Acoustic Target Classification 

Decisions and Approaches

Decisions:

1. Empirical, Experimental, Modeling

2. Scattering Region: Resonance, Geometric

3. Discrete Single or Multi Frequency, Wideband

4. Single Target, Ensemble Backscatter

Approaches:

1. Prior Knowledge and Direct Sampling

2. Statistical Comparisons

3. Matching Models to Measures



Empirical (in situ) Experimental (ex situ) Modeling

Acoustic Classification Org Chart
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Ex Situ Target Strength Measurements

Henderson & Horne 2007

Nakken & Olsen 1977

species, length, 

frequency, tilt

Edwards & Armstrong 1983
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Image Analysis: Digital 

Echogram Metrics

Nero and Magnuson 1989

- Goal: classify patches 

relative to environment

- tabulate patch metrics

- linear discriminant functions



Image Analysis: Shapes algorithm

Barange 1994

- schools module in Echoview



DIDSON/ARIS: 

Visual ID, Metrics

Burwen et al. 2007



Multibeam Target Strengths

Cutter & Demer 2007

Empirical measures

Backscatter models



Inverse Approach

Multifrequency Measures+Inverse Algorithm+Backscatter Models

Inverse algorithm

Species/Size Class Resonance Peaks

where Si is backscatter vector at 

frequency i, sij is backscatter at 

frequency i and species/size 

class j, and ni is number of 

organisms at frequency i

Critical needs: accurate scattering model, unique 

sbs for each species/size class

Holliday 1977
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Passive Acoustics: Hydrophones

1. Crustaceans (e.g. snapping shrimp)

2. Teleost fish with swimbladders (e.g. weak, red drum)

3. Marine mammals (e.g. whales, dolphins)



Passive Acoustics: Invertebrates

Snapping Shrimp

Au & Banks 1998



Passive Acoustics: Whale Tracking

C. Clark, Cornell Univ

Whale Spectrograms IUSS Whale Track



Resonance Peak Measures

-60

-65

-70

-75

-80

-85

-90

-95

-55

D
e
p

t
h
 
(
m

)

Nero et al. 1997

- match resonance 

peaks to backscatter 

models

Current contributions from Stanton, Lavery, Jech



Wideband Frequency Spectra

cod saithe, haddock

horse mackerel mackerel

Simmonds et al. 1996

- neural network & 

discriminant analysis
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Target Strength & Direct Sampling

Sund 1935

Combine biological knowledge, net samples, and echogram patterns



Echo Envelope Metrics 

Ensemble Backscatter
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Rose & Leggett 1988

- linear discriminant 

functions



Single f, Echo Envelope, + Enviro

L

H

Depth

Altitude

Perimeter

Shoal Depth

Scalabrin et al. 1994

- discriminant functions & PCA

Haralabous & Georgakarakos 1996

- discriminant functions & neural 

networks



Multifrequency Classification & 

Regression Trees

Fernandes 2009

- aggregation & environmental metrics as covariates

- schools module to define aggregations



Multifrequency

data

Un-Supervised Semi-Supervised Supervised

Multifrequency Classification

Data Only Some Reference Samples Many Reference Samples



Multifrequency

data

Un-Supervised Semi-Supervised 

Relative S v

strength

Jech & 

Michaels

Supervised

DeRobertis

& Ressler

Goss et al.

Multifrequency Classification

Sv

distribution
Sv max 

amplitude
Frequency 
differencing

Kloser et alAnderson et al Korneliussen &

Ona
Woilez et al

Frequency 
differencing

Sato et al
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Anderson et al. 2007



Synthetic Echogram

Kloser et al. 2002

Sv maximum amplitude



Frequency Response

mackerel herringkrill

Frequency (kHz)

mackerel
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horse mackerel

boarfish

Korneiliussen and Ona (2007)



Semi-Supervised Classification

K-means Clustering

Woilez et al. 2012



MVBS Frequency Differencing

Sato et al. 2015



Training sets of ‘pure’ 

samples

Squid Euphausiids

All data

Pollock

Analyst-assigned 

categories

Supervised Classification



- renewed interest in resonance peaks as classifier

- renewed interest in wideband for resolution and classifier 

(EK-80), community standards being established but not

there yet

- potential for machine learning/big data tools to become more 

prevalent

- alternate platforms increasing spatial and temporal ranges 

but acoustic classification is an ongoing challenge

- increased scrutiny from marine mammal community may 

constrain frequency range

Current Trends... as seen in 2018


